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Finite amplitude convection with changing mean 
temperature. Part 1. Theory 

By RUBY KRISHNAMURTI 
Institute of Geophysics and Planetary Physics, 

University of California, Los Angeles, California? 

(Received 17 August 1967 and in revised form 26 December 1967) 

When a horizontal layer of fluid is heated from below and cooled from above 
with the mean temperature and physical parameters of the fluid constant, the 
two-dimensional roll is known to be the stable solution near the critical Rayleigh 
number. In  this study, with the mean temperature changing steadily at a rate 7, 
the Rayleigh number and the velocity and temperature fields governed by the 
Boussinesq equations are expanded in two parameters: 7, and the amplitude 8. 
Hexagons are shown to be the stable solution near the critical Rayleigh number. 
The direction of the motion depends upon the sign of 7. A finite amplitude insta- 
bility is possible with an associated hysteresis in the heat flux as the critical 
Rayleigh number is approached from below or from above. 

1. Introduction 
The instability that occurs in a static layer of fluid heated below and cooled 

above has long been a source of fascination (B6nard 1900; Rayleigh 1916; 
Pellew & Southwell 1940; Chandrasekhar 1961). At the point of instability, the 
possible flows form an infinitely degenerate set. The finite amplitude studies of 
Malkus & Veronis (1958) and of Schliiter, Lortz & Busse (1965) were addressed 
to the question, which of these would be restricted by the non-linearities, and 
which would be realized in experiment. Schluter et a2. (1965) have shown that, 
with constant material properties, all three-dimensional flows are unstable and 
that the two-dimensional roll is the only stable solution. 

However, past observations of convection near the critical point has often 
shown a three-dimensional character and in fact, flows that are clearly two- 
dimensional are rare. In  the work of Tippleskirch (1956), Palm (1960), Busse 
(1962), Segel & Stuart (19621, and others, the selection of hexagons is attributed 
to the non-Boussinesq effect of variation of physical parameters, such as the 
viscosity, with temperature. 

It may be noted that with a horizontally infinite geometry, rolls are symmetric 
in the sense that the sign of the vertical motion can always be altered by a hori- 
zontal translation of the reference axes. With hexagons, however, the direction 
of flow is an added degree of freedom to be determined. It would seem that the 
direction of flow, and perhaps a preference for hexagons, would depend upon 
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vertical asymmetries. In  studies such as Palm’s (1960) the variation of viscosity 
with temperature introduces a vertical asymmetry. 

Another form of asymmetry which can, and often does, occur is in the heating. 
Convection can be obtained by only heating from below, or by only cooling from 
above, rather than symmetrically heating and cooling below and above. This is 
the case with some of the convection studies reported in the past. In  particular, 
if the top of the layer is open to the air, or is covered by a poorly conducting 
transparent boundary for the sake of viewing the plan form of the cells, then the 
heat supplied from below is not carried away and the mean temperature must 
change. Also, in natural occurrence it would rarely happen that convection sets 
in with the mean temperature strictly fixed. If the mean temperature of the fluid 
is increasing steadily with time, the conduction temperature prof3e appears as in 
figure 1 (a). Defining 7 to be a rate of change of mean temperature, 7 is positive in 
this case. If the mean temperature is decreasing, 7 negative, the conduction 
temperature profile is as shown in figure l(b). It is this asymmetry and the 
associated removal of the degeneracy within the framework of the Boussinesq 
equations that is investigated here. 

2. Governing equations 
A layer of fluid of depth d and of infinite horizontal extent is bounded above 

and below by perfect conductors. An adverse temperature difference AT is 
maintained across the layer. 

From the statements of conservation of mass, momentum and energy, the 
Boussinesq equations are derived as the lowest order in an expansion in two 
parameters, one proportional to  the depth of the layer, the other to the tempera- 
ture difference across it (Spiegel & Veronis 1960; Mihaljan 1962; Malkus 1964). 
They are written 

(at- KV~)T  = -uiaiT, (1) 
(a,  - V V ~ ) U ~  = -air - uj aiui + ga(T - T,)A~, (2) 

aiuj = 0, (3) 

where uj is thejth component of velocity, j = 1 ,2 ,  3, T is the temperature, r an 
effective pressure, K the thermometric conductivity, Y kinematic viscosity, a the 
thermal expansion coefficient, 

a a a , = -  a =  ; - hi = (0,0,1).  
3 - axi’ 

The equation of state 

and the summation convention over repeated indices have been used. In  this 
set of non-linear coupled equations for the velocity and temperature fields, the 
physical parameters Y, K ,  a are constants to this lowest order. The density appears 
as a constant everywhere except in the buoyancy term, and the equation of mass 
conservation is, to this order, the statement of incompressibility. Variation of the 
physical parameters is a higher order effect. 

P = POP - a(T - To)], 
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The boundary conditions to be satisfied at  the upper and lower surfaces are: 

w = 0, a&w = 0 at a stress-free boundary, 

ui = 0, a,w = 0 
T = T, (defined below) at  perfectly conducting boundaries, 

at a rigid (no slip) boundary, 

where z is the vertical co-ordinate, w the z-component of the velocity. 
In the conduction state, equation (1)  for the static temperature T, becomes 

( a , - K a i , ) T =  0 

to  be solved for the following boundary conditions: 

T,= +AT+$ at z = -$a, 
T, = -$AT+$ at x = 3d. 

(a) .rl>o (b) 4 < 0 

FIC~URE 1. Conduction temperature profiles. 

We seek a steady solution of the form 

where T, is a reference static temperature equal to  Tt .  This represents the case 
in which all points in the fluid are changing in temperature at  the same rate as 
the boundaries, and the shape of the temperature profile is independent of time. 
Non-dimensionalizing by using d for length scale, d2/K for time scale, and AT for 
the static temperature, we obtain 

T ’ - T ’ =  s r  - x ’ + -  h ‘ r  75’2-$], (4) 

whese 

The total temperature is now written as 

T = T,+8. 
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The equation governing 8 is then 

( a t - K v 2 ) 6  = - U t . a 2 ~ - U j a j 0  

3 3  
AT 7 

= -us - - zu, - u .a .  8. 
d K 

Non-dimensionalizing , using the scales 

we obtain the equations governing stationary solutions, neglecting primes: 

v2Ui+mi-a,n = 

v2e + R ~ ,  = ~ y z u ,  + ui a j  0, 
Pr 

where pr  = Prandtl number = v/K, and R = Rayleigh number = ( g a / K v ) A T d a .  
Following the method used by Schluter et al. (1965) to test the stability of the 

stationary solutions of ( 5 ) ,  they will be perturbed by disturbances (G,, 6) of 
infinitesimal amplitude. The equations governing these perturbations, having 
growth rate g, are 

3. Method of solution 

using a double expansion in the parameters e, 7: 
The stationary fields and the Rayleigh number are expanded as follows, 

Q) 

I u.  = gnymU(jn,m), 
n=l ,m=O 

We seek solutions of the non-linear equations (5) for small but finite amplitude. 
The problem of ordering the non-linearities by an expansion in powers of an 
amplitude e was formulated by Malkus & Veronis (1958); the convergence of the 
expansion has been proven by Lortz (1961). Thus 7 appears as a given small 
parameter in equations having known solutions when 7 is zero. Substituting the 
expansions (7) into the governing equations ( 5 )  and using E and 7 as ordering 
parameters we obtain an infinite set of linear inhomogeneous differential equa- 
tions. 

When the fields are expanded in powers of e and 7, R must also be so expanded, 
the R(n*m) being determined at each order in such a way as to satisfy the solubility 
conditions on the inhomogeneous equations. 
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Although the problem of testing the stability of the solutions of (5) would 
seem very difficult, it  is noted that the perturbation equations (6) contain e and 
q as given small parameters. Furthermore, when e and 7 approach zero the 
equations (6) reduce to the linear stability problem which has known solutions. 
Thus it is natural to expand the perturbation fields and the growth rate c as 
follows : 

m 

n= 1 ,  m=O 

The velocity and temperature fields are required to satisfy the boundary con- 
ditions at  each order. 

To order el, qo, equations (5) and (6) give the linear stability problem with well- 
known minimum eigenvalue, R,, and separated eigenfunctions of the form 

ax az 

-a2x -a2y 
up,o’ = a d d l > O ) ,  where Si = [ ay az ] , 
d1?O) = 2 c,w,f(~), wp = exp{ik,.r}. 

N 

= - N  

Here r is a horizontal position vector, k, a horizontal wave vector. 
The stationary equations to order el, q1 are: 

(9) 

(10) 
VzU;i, 1) + ,p,l)h. - a .  ( 1 , ~  = 0, 

v2,ga 1) + ~ ( o ,  0)  (1,i) = - ~ ( o ,  i ) u ~ ~ ,  0 )  + R(O, o)zup  0). u, 

z z=  

Multiplying the first part of (10) by R(O,O)U;(~*~), the second by O ’ ( l 9  O), and adding and 
integrating over the volume of the fluid, the solubility condition 

R(O, lI(O’(1, o)ujl, 0 )  ) = R(O,O)(~‘(l,O)zu~l,O)) 

is obtained where O’(s O), ui(l9 O )  are arbitrary solutions of order ( 1 , O ) .  The brackets 
indicate an integration over the entire fluid, divided by the volume of fluid, in 
the limit of horizontal extent tending to infinity. 

Since O’(l,o)ujl~o) is an even function of x ,  the result is that R(O*l) = 0. To order 
el, q2 the stationary equations are 

, I  (11). 
~ 2 4 1 ~ 2 )  + ,yl, 2 ) ~  . - a .  +, 2) = 0, 

a a  

V28(19 2) + RCO. O)uA1,2) = - R(O, 2) ( 1 9 0 )  + RK4 0)zu (L1). 
u z  

Multiplying the first by R(O~O)ui(l~O), the second by O’(l*O),  and adding and integrat- 
ing over the volume of the fluid gives 

p, 2){@’(1, o)uz(l, 0) )  = R(O,O)(~‘(l> Oh% (191)). 

For two free boundaries, R(O.2) = - 1.96. For two rigid boundaries the critical 
Rayleigh number can be computed, including all q orders, from the critical 
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‘Taylor numbers for Couette flow between two cylinders rotating in the same 
,direction. The adjoint relationship of the two problems has been pointed out by 
Debler (1966), and critical Rayleigh numbers computed by Debler (1966), 
Sparrow, Goldstein & Jonsson (1964). 

To order c2, r l ,  the stationary equations are 

V2(3(20 1) + R(O. O)ui2,1) = - R(L1)uAl. 0) + R(O.O)zu!Z, 0) + u!l, 018 .@I, 1)  + u(.l, 1)a .&LO) 1 
3 3  3 3 ’  

Multiplying the first by R(o,o)u~(l~o), the second by 19’(l?O), adding and integrating 
over the volume of the fluid, we obtain from the solubility condition, 

+ R(0, o)(d’(L O)zu,(% 0)) + (S’CL O)u(l,O)a 3 3  . o(1 .1)  + (j’(1,O)u;L l)aj@l.O)) * (13) 

The right-hand side of (13) can be transformed in such a way that R(l.1) can be 
computed without the solution O(1, I ) ,  ui1, l), giving 

R(L U(& 0)uAL 0)) = R(O, O){(@,o)z~~% 0 ) )  - (~(Z.O)zu$. 0) ) ) .  (14) 

The right-hand side of (13) may be written as H (w‘ ,  w ,  w ) ,  as triple products of 
(1,O) solutions. Allowing the arbitrary w’ to range through all solutions, the 
integral H will be non-zero if, and only if, k,, kK, k, form an equilateral triangle. 
R(’* l)  vanishes unless a solution contains two k-vectors +T apart. If it  does contain 
two such k-vectors, then (12) is satisfied with R(l,l) non-zero only if the solution 
contains another k, = k, k k,, with equal coefficients cK, c,,, cp: 

3 3 
w = 2 c,exp{ik,.r), c,c: =-$, C k,= 0. 

K =  - 3  K = l  

The results of the calculation are given in table 1. 
The results to order el,  7“ clearly give the critical Rayleigh number 

R, = R(O*O) + 72R(o, 2 )  + . . . 
For two rigid boundaries, and 7 = 8 for example (Krishnamurti 1967) 

R, = 1537.5. 

This is a change of 10 yo from the critical number when 7 = 0, and should be a 
measurable difference. 

To first order in E ,  second order in 7, we have 

The result that R(lvl) is non-zero leads us to conclude that a finite amplitude 
instability is possible, a t  a Rayleigh number less than the critical value R, 
predicted by the linear theory. Had R(l*l) been equal to zero, it would be found 

that R - R ,  
€2 = ___ R(2.0) ’ 
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and since B 2 , 0 )  is positive, a real amplitude E would be impossible at R < R,. 
In  other words, the linear stability theory would have correctly predicted the 
lowest Rayleigh number at which the fluid was unstable. Of course it is not 
necessary that an infinitesimal amplitude disturbance be the first to grow. We 
know that instability is often initiated by the nonlinear effects of small but finite 
disturbances. The finite amplitude study constitutes a critique of linear stability 
theory in that it allows us to state under what conditions the linear stability 
theory is meaningful. Here we find that R(l.1) is non-zero and that motions are 
possible below R,. These must be finite amplitude disturbances since infinitesimal 
amplitude disturbances are known to decay below R,. Their amplitude as given 
by (15) is seen to be opposite in sign to that of 7 for R < R,. 

Pr 
for hexagons 

Two rigid boundaries 

1.526 2.048 
R'0.0) = 1707.762 R ' I . 0 )  = 0 R'2,O) = 27.50+-+- 
u = 3.117 forhexagons pr p: 

8.220 
R'1.1) = 19.94+- R'0.1' = 0 

for hexagons pr 
R(1.1) = 0 for all 

other forms 

TABLE 1. Results of the calculations. 

From these results we may expect to observe the following: (i) a new critical 
Rayleigh number dependent upon 7, (ii) hexagonal flows near the critical Ray- 
leigh number with the direction of flow determined by the sign of 7 (the stability 
range of hexagonal flows is determined in $4 below), (iii) a hysteresis in the heat 
flux as the critical Rayleigh number is approached from below and from above. 
The horizontally averaged heat equation has a first integral H given in dimension- 
less form by 

Solving (7)  for E gives 
H' = R + (w'sl). 

yR(L1) yR(l.1) 2 R - R, 4 
(16) E = -~ 2R(2,0) ' [ (v)) + -1 . 

The stability calculation of 0 4 below shows that e7R(1,1) must be negative for the 
stability of hexagonal flows. Calculation has shown that R@,O) is positive. From 
this we can deduce the heat flux curve as shown in figure 2. The minimum of this 

29-2 
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curve is found a t  (aH/aR)-l = 0 or equivalently (&/aR)-l = 0. Differentiating 
(16) gives us the Rayleigh number corresponding to the minimum as 

Rmin - R, = - (7R(171))2/4R(2.0). (17) 

At R = Rmi,, we note that the corresponding amplitude is 

- - TR(L 1)/2R(2,0). Emin - 

This is identical to eA, the minimum amplitude for the stability of hexagons, 
computed in Q 4 below. 

9 J 
FIGURE 2. Heat flux H as a function of Rayleigh number R and rate of change of mean 

temperature 7. 

Another point of interest is the calculation of the Rayleigh number at  which 
the heat flux curves for rolls intersects that for hexagons. Since R(l.1) is zero for 
rolls, we have that 

R - R ,  
€2 == __ R(2,O) * 

The heat flux for roll cells near R,. is 

while that for hexagonal cells is, from (16), 



Finite amplitude convection. Part 1. Theory 

The two curves intersect at  R = R, where 

453 

(18) 

The amplitude at  R = R, is e, given by 

4. The stability range of hexagonal flows 
To be realized in experiment, the steady finite amplitude solutions must be 

stable at  least to disturbances of infinitesimal amplitude. The stability of the 
finite amplitude flows is investigated in the manner of Schliiter et al. (1965) who 
have shown that &O) vanishes for all solutions and that d 2 + O )  is positive for all 
except the roll solution. 

When the mean temperature of the fluid layer is changing at  a rate of 7, there 
is the possibility of the term e y d l , l )  compensating for a positive e2d2,O). 

The non-stationary equations to order e2, y1 are: 

1 1 

P r  P r  
c724:2,1) + &%l'& - a.  5(2,1) = - g ( L 1 ) q l .  0 )  + - [,$.'. 1,a . u(.l ,  0)  + u(1 .  ua , 3f.1.0) 

3 3 3  3 3 %  

+ Q'1,o)a .U$L 1) + u c l , o ) a ,  YlA], 

. & L O )  + ujl, o'al &l. 1). 

1 3  3 

V2@& 1) + R(0, 0) (231) = q(Ll )@l ,  0)  + B(O,O)zr& (2,O) - R(L 1) - (1,O) + "( 1, Ua . @1,0) 
UZ u z  u1 3 

+ q'. . d(1.1) + u!l. 

- ~ ' , ' ) ( M ( w ' @ ) )  + R ( l , l ) ( N o ( ~ ' @ ) )  = (R(w'~w)), 
R(w', 65, W )  = H(w', 65, W) + H(w', W, @), 

3 3 3  
The solubility condition gives 

(19) 

(20) where 

where H was defined for the stationary problem and whereM is a positive definite 
quantity. 

Letting w' run through the orthogonal set 

w' = exp {ik, . r}, (p  = - N . .  . - 1,1 . .  . N ) ,  

we obtain from (19) a system of equations for the coeficients Eof 65. The solubility 
condition is then satisfied if the secular determinant vanishes. 

To order e3, qo, the hexagonal solution was shown to be unstable since 

€2&0) > 0. 

To order c2y, however, = o(o,0)+ey?la(1,1)+e2a(2,0), it  is found that ey&1)  can 
be negative and of larger absolute magnitude than e2d2,0), for a certain range of e. 
Although to order e3,y0, rolls were shown to be stable, they are now found to be 
unstable if there is an y effect. For non-hexagonal solutions d l . 1 )  vanishes so 
there can be no suppressing of the instability predicted by a positive d2,O). The 
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condition for the stability of hexagons is eqR(l.1) < 0. Rolls are stable in the 
following amplitude range : 

I27R(19 1’8, I 
le l  &3)(L*-L1) = 14 

where 
0.04566 0.07089 -- LA 0-18921+-+7, 

iv; - P r  Pr 
L, = 0, 

for two free boundaries; and for two rigid boundaries, 

0.05116 0.06509 
= 0.19913+-++, 

% Pr Pr 

Thus we arrive at a stability diagram just as Busse (1962) does in his study of 
varying physical properties. 

I E l  

Stable hexagons 

FIGURE 3. Stability diagram. 

5. Conclusions 
Within the framework of the Boussinesq equations, the degeneracy en- 

countered in the linear theory has been removed by the non-linearities and the 
changing mean temperature. The static state is unstable to finite amplitude 
disturbances at  Rayleigh numbers below the critical point predicted by linear 
theory. There is a range of Rayleigh number near the critical for which hexagonal 
flows are stable with the direction of flow determined by the sign of q. At higher 
Rayleigh number the roll is found to be the stable flow. A hysteresis in the heat 
flux curve is expected as the critical Rayleigh number is approached from 
below or from above. Here is an effect whose magnitude in a laboratory experi- 
ment can be altered a t  will simply by turning a dial. In  part 2 (Krishnamurti 1968), 
some of these results are tested in a laboratory experiment. 

This paper is condensed from a Ph.D. dissertation, University of California, 
at Los Angeles. I wish to express my deepest gratitude to Professor W. V. R. 
Malkus for suggesting this problem and for his continued interest and encourage- 
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